Découverte d’une nouvelle fonction des anticorps contre le VIH : ils immobilisent les virus à la surface des cellules

Communiqué de presse
|

En combinant des techniques de microscopie de pointe et des cultures de virus in vitro, des équipes de l’Institut Pasteur, du CNRS, du Vaccine Research Institute (VRI) et d’Université de Paris ont découvert une nouvelle fonction des anticorps ciblant le VIH-1[1]. Les scientifiques ont trouvé que certains anticorps, déjà connus pour cibler efficacement la protéine d’enveloppe Env du VIH-1, peuvent empêcher la libération des virus par les cellules infectées et donc la diffusion du virus. Grâce à leur forme en Y, les anticorps s’accrochent entre la cellule infectée et les virus, ou directement entre les virus. Cette chaîne ainsi constituée d’anticorps et de virus empêche leur propagation. Ces résultats montrent que ces anticorps puissants possèdent différentes activités antivirales, au-delà de la neutralisation. L’étude fait l’objet d’une publication dans la revue Nature Communications, le 2 février 2022.

Les anticorps neutralisants à large spectre (broadly neutralizing antibodies - bNAbs) ciblant la protéine d’enveloppe Env du virus sont un espoir important dans le traitement du VIH-1. Ils ont été initialement identifiés chez les rares patients ayant un sérum capable d’inhiber de nombreuses souches du VIH. Ces anticorps possèdent de multiples activités antivirales. Ils sont capables de neutraliser le virus, c’est à dire de l’empêcher d’infecter de nouvelles cellules, mais également de tuer les cellules infectées. On parle de molécules polyfonctionnelles. Bien comprendre l’étendue de ces activités antivirales est nécessaire afin de mieux utiliser les anticorps existants ou pour affiner les critères de sélection de nouveaux anticorps. Par ailleurs, mieux connaître la polyfonctionnalité des anticorps ciblant le VIH-1 est utile pour mieux comprendre le rôle des anticorps pour combattre d’autres infections virales.

Dans un premier temps, les équipes de l’Institut Pasteur, du CNRS, du VRI et d’Université de Paris ont voulu déterminer si les anticorps pouvaient empêcher la production de virus par les cellules infectées. Pour cela, ils ont cultivé in vitro des lymphocytes T CD4 (la cible naturelle du VIH) avec différents anticorps pendant 24 heures. Ils ont ensuite mesuré la quantité de virus produite par les cellules dans le milieu de culture et la quantité de virus restant dans les cellules. Grâce à ces expériences, les scientifiques ont démontré que certains anticorps augmentaient la quantité de virus dans les cellules, mais diminuaient celle dans le milieu de culture. Ce résultat intrigant leur a fait penser que certains anticorps bloquaient la libération des virus, sans empêcher leur production.

Pour tester cette hypothèse, les chercheurs et chercheuses ont utilisé différentes techniques de microscopie pour observer la production des virus par les cellules. Ils ont d’abord examiné les cellules avec des microscopes à fluorescence, une technique qui permet de différencier les protéines du virus. Cela leur a permis de montrer que les cellules infectées accumulent de grandes quantités de protéines virales matures. Ce résultat suggère que des virus complets s’accumulent dans les cellules. Afin de déterminer la localisation exacte de ces virus, les chercheurs ont ensuite utilisé la microscopie électronique à balayage pour observer la surface des cellules infectées. « Par cette méthode, nous avons vu que ces anticorps (les bNAbs) entraînent une accumulation de virus à la surface des cellules, formant des amas et des structures très atypiques (cf. figure) » révèle Timothée Bruel, co-auteur principal de l’étude, chercheur au sein de l’unité Virus et immunité[2] à l’Institut Pasteur.

Les scientifiques ont ensuite utilisé une technique de microscopie électronique à transmission couplée à un immunomarquage avec des billes d’or. Cela leur a permis de montrer que les anticorps s’immiscent entre les particules virales et la cellule infectée. Ils forment ainsi des amas en chaîne. Des expériences avec des anticorps mutants ont ensuite démontré que c’est la forme en Y des anticorps qui permet cette structure en amas. Leurs bras peuvent relier ensemble deux virus, ou bien un virus avec la membrane de la cellule infectée. Les points d’accroche sont suffisamment forts pour créer ce phénomène.

« Nous avons montré que seuls les anticorps les plus puissants séquestrent les virus à la surface de cellules infectées. Les virus pris au piège ne peuvent plus infecter de nouvelles cellules » conclut Olivier Schwartz, co-auteur principal de l’étude, responsable de l’unité Virus et immunité à l’Institut Pasteur. 

Ces travaux ont permis de découvrir une nouvelle activité antivirale des anticorps à large spectre (bNAbs) contre le VIH-1. Cela permet de mieux comprendre le mode d’action de ces anticorps et d’expliquer leur efficacité dans les essais cliniques. Les chercheurs et chercheuses étudient maintenant les anticorps ciblant d’autres virus, notamment le SARS-CoV-2 pour déterminer s’ils bloquent aussi la dissémination virale par ce mécanisme.


[1] VIH-1 est la forme pandémique du virus qui touche l’homme. L’autre type du virus est le VIH-2, moins fréquent.

[2] Au CNRS, cette unité a pour dénomination « Virologie » (CNRS/Institut Pasteur).


Source

Broadly neutralizing anti-HIV-1 antibodies tether viral particles at the surface of infected cells, Nature Communications, 2 février 2022

Jérémy Dufloo1,2, Cyril Planchais3, Stéphane Frémont4, Valérie Lorin3, Florence Guivel-Benhassine1, Karl Stefic5, Nicoletta Casartelli1, Arnaud Echard4, Philippe Roingeard6, Hugo Mouquet3, Olivier Schwartz1,7,* and Timothée Bruel1,7,*

1 Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015 Paris, France
2 Université de Paris, École doctorale BioSPC 562, 75013 Paris, France
3 Institut Pasteur, Université de Paris, INSERM U1222, Humoral Immunology Laboratory, 75015 Paris, France
4 Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 75015 Paris, France
5 CHRU de Tours, Hôpital Bretonneau, Service de Bactériologie-Virologie, 37000 Tours, France.
6 Université de Tours, CHRU de Tours, INSERM U1259 MAVIVH and Plateforme IBiSA de Microscopie Électronique, 37000 Tours, France
7 Vaccine Research Institute, 94000 Créteil, France

Retour en haut