Inauguration Research

Future

For research, for health, for our future

2012

HIGHLIGHTS 2012
The high point of 2012 was the inauguration of the François Jacob building dedicated to emerging diseases. This new building was named in honor of a remarkable person, a truly outstanding Institut Pasteur scientist who I am confident will be a source of moral and intellectual inspiration for scientists as they seek to follow in his intrepid footsteps. The culmination of this project was the inauguration ceremony attended by French President François Hollande on November 14, 2012, 124 years to the day after the official opening of the Institut Pasteur. The center, built on the founding principles of dialog, multidisciplinarity and cutting-edge technology, is a microcosm of the Institut Pasteur itself, which has always sought to achieve intellectual and scientific excellence. The François Jacob building features a fresco by artist Fabrice Hyber, who wanted to pay tribute to the creativity of scientists. This unique work illustrates the connection between art and science – one inspires the other. Creativity and innovation can take many forms. By recruiting scientists from across the world, from different fields and different cultures, our aim is to foster the exchange of ideas, and to encourage new and original approaches to research.

Since the start of my term as President in 2005, I have sought to bring science into the public arena. Over these eight years, the Institut Pasteur’s scientists have regularly presented their work and projects to the general public, shattering the cliché of the white-coated scientist held away in an ivory tower. The Institut Pasteur has also welcomed many new faces and new research topics, encouraging multidisciplinarity and embracing modernization as it attracts a new generation of bright young scientists. The Institut Pasteur is committed to pursuing its research into human infectious diseases, in cooperation with the institutes in the International Network, as it strives to serve the world’s most vulnerable populations. This year also saw the successful completion of a film project of particular importance to us. The documentary, entitled Les Héritiers Pasteur (‘The Pasteur Heirs’), was broadcast on TV channel France 5 on the eve of the François Jacob building’s inauguration ceremony. It introduces us to Institut Pasteur scientists who embody the Pasteurian spirit. Finally, I must mention Pasteurdon, the annual fundraising event that was once again a huge success thanks to the overwhelming generosity of the public, who have supported the Institut Pasteur since it was first established.

This magazine presents some of the highlights of 2012, a year which saw the culmination of a wide range of research and teaching projects, partnerships and joint initiatives, both in France and abroad. I am proud of all that we have achieved together for human health across the world. Inspired by the trailblazing spirit of its founder, the Institut Pasteur is ever ready and committed to tackling the challenges that lie ahead.

ALICE DAUTRY,
PRESIDENT OF
THE INSTITUT PASTEUR

2012 promises...
Taking Action Against Emerging Diseases

The François Jacob building, dedicated to research in emerging diseases, was inaugurated on November 14, 2012 by French President François Hollande in a ceremony attended by Marisol Touraine, French Minister of Social Affairs and Health, and Geneviève Fioraso, French Minister of Higher Education and Research. Also in attendance were Professor Alice Daucy, President of the Institut Pasteur, and Jean-Pierre Jouyet, Chairman of the Institut Pasteur Board of Directors, not to mention several other notable public figures. In a nod to history, this event comes 124 years to the day after the Institut Pasteur was officially opened by French President Sadi Carnot.

According to the World Health Organization, a new disease emerges somewhere in the world each year. In light of these statistics, the Institut Pasteur decided to construct this building, designed to offer an effective response to current and future challenges facing biomedical science. Today this building, which began construction in 2008, has been named the François Jacob building after the eminent Institut Pasteur scientist who, along with André Lwoff and Jacques Monod, was awarded the 1965 Nobel Prize in Medicine for his pioneering work in molecular biology.

Over 400 scientists will work within this center for research which offers state-of-the-art equipment in a multidisciplinary environment for intellectual exchange. The Institut Pasteur teams confronted with major epidemics such as SARS, the influenza A(H1N1) pandemic or chikungunya have always been on the front lines to offer detection and diagnostic solutions as quickly as possible. Come what may, the Institut Pasteur stands at the ready!

François Jacob began his journey at the Institut Pasteur in the summer of 1950 after wounds sustained during the Second World War forced him to give up his career as a surgeon and turn to biology. While a professor at the Institut Pasteur he was appointed chair of cellular genetics at the Collège de France, a French higher education and research institution. In 1965, along with André Lwoff and Jacques Monod, he was awarded the Nobel Prize in Medicine for his discoveries relating to the genetic regulation of enzyme and virus synthesis. “It was one of the most enjoyable and productive periods of my life. To achieve an atmosphere of such enthusiasm, people need to be prepared to work and play together”, recalled Jacob. François Jacob left us in April 2013. He was a member of the Académie française and a recipient of the Grand Croix de la Légion d’Honneur.
At the heart of the new François Jacob building art and science meet with the giant fresco Sans gêne by Fabrice Hyber. With 800 tiles donated by the Sèvres Ceramics Museum, the work of art covers elevator walls over five floors and measures 18m high and 8.2m wide.

A trained mathematician, this renowned international artist is particularly sensitive to the scientific world. He used porcelain or white tiles, in a nod to the tables historically used in laboratories, as well as his own combination of medicine, astrophysics, physics and genetics to create this unique work of art. A storyboard style layout that runs up the elevator wall evokes the double helix of a DNA molecule and creates a winding path for thoughts to wander.

Like a scientist, he likes to experiment, testing different materials and different ideas. There is a striking resemblance between the artistic process and the scientific one.

“When he was a child, Louis Pasteur claimed to be more interested in pastels and charcoal than scientific research,” claims Institut Pasteur President, Alice Dautry. Clearly science is just as much a source of inspiration for art as art is for science.

The construction of the François Jacob building has been one big architectural adventure for the Institut Pasteur. In a true show of expertise, architects Robert Chapellier and Antoine Dacbert and their teams were successfully able to integrate this exceptional research building into a site where the oldest buildings - dating back to 1887 - are on the supplementary list of Historical Monuments.

This is the largest building ever constructed by the Institut Pasteur, with a footprint of 4,500m² and 16,000m² of usable floor area. The François Jacob building was designed specifically to facilitate exchange and discussion between scientists. And even the fine arts have been represented, with the giant fresco Sans gêne by artist Fabrice Hyber.

With 16,000m² of usable surface area this vast facility provides open spaces and encourages dialog between scientists. The atrium, multi-purpose facilities and walkways in the new research center for emerging diseases are designed to facilitate dialog and house scientists from different disciplines with a view to comparing approaches and sharing expertise to explore new ideas. On a single floor a suite of experimentation stations for different research units can be found at the center of the laboratory facilities, with offices set around the perimeter.

One of the major advantages of this new building is its technical sophistication. Modeled after an iceberg, a huge area is located below ground level. This underground level contains facilities such as the 10 MW refrigeration plant which keeps noise disturbance at a minimum, as well as the large technical facility containing high-security laboratories and experimentation stations. The highly sophisticated technological facilities give scientists the best possible environment for world-leading research.

MULTIDISCIPLINARY

With 16,000m² of usable floor area this vast facility provides open spaces and encourages dialog between scientists. The atrium, multi-purpose facilities and walkways in the new research center for emerging diseases are designed to facilitate dialog and house scientists from different disciplines with a view to comparing approaches and sharing expertise to explore new ideas. On a single floor a suite of experimentation stations for different research units can be found at the center of the laboratory facilities, with offices set around the perimeter.

HIGH-TECH

One of the major advantages of this new building is its technical sophistication. Modeled after an iceberg, a huge area is located below ground level. This underground level contains facilities such as the 10 MW refrigeration plant which keeps noise disturbance at a minimum, as well as the large technical facility containing high-security laboratories and experimentation stations. The highly sophisticated technological facilities give scientists the best possible environment for world-leading research.

The art of science

For the best in research

ARCHITECTURAL ENDEAVOR

16,000 m² of usable floor area

400 researchers and scientific experts

ARCHITECTURAL ENDEAVOR

16,000 m² of usable floor area

400 researchers and scientific experts
Emerging Diseases

Predemics: Europe’s united front against emerging viruses

Predemics, the new European program against emerging viruses, launched in 2012, is coordinated by Sylvie van der Werf who also heads the Molecular Genetics of RNA Viruses Unit at the Institut Pasteur and the Influenza National Reference Center. With €117 million of European Union funding over a five-year period, this program intends to study representative viruses from animal reservoirs with high potential for crossing the species barrier. These include the Influenza viruses, hepatitis E, Japanese encephalitis, and related viruses such as the West Nile virus, as well as lyssaviruses, particularly those causing rabies. It is clear that the various outbreaks and epidemics experienced over the past fifteen years — SARS, avian influenza, West Nile virus, etc. — have led public authorities to seek solutions and tools to prevent the emergence of new diseases. “Understanding the complex mechanisms that govern interactions between a virus and its host is the primary objective of our consortium,” explains Sylvie van der Werf. “Determining what leads to the emergence of a disease will help us identify what prevention strategies to implement.”

Denfree takes off in the fight against Dengue

In 2012 a vast international project, Denfree, was initiated to better control epidemics of dengue fever throughout the world. With €6 million in funding from the European Union, this program comprises 14 partner institutions from eight different countries in Europe, Asia and South America. For Anawaj Sakuntabhai, head of the Functional Genetics of Infectious Diseases Unit, who runs the project, “This ambitious program will allow us to study dengue from many different angles, for example looking at the virus in terms of epidemiology, immunology, climatology or geography. This multidisciplinary approach will enable us to fully address several fundamental questions about dengue and more efficiently control this disease.” The WHO estimates that 50 million people are infected with dengue virus each year, of which 500,000 contract potentially fatal dengue haemorrhagic fever. While a wide variety of symptoms exist for this disease, the majority of those infected with the virus show no symptoms. This will be one of the Denfree project’s main areas of study. The goal for the scientists will be to determine whether or not these people, infected with the virus but showing no symptoms, can transmit the virus, and also to determine what resistance mechanisms the body uses in such cases. Scientists hope to develop predictive models to anticipate epidemics, identify effective mosquito control measures and create a diagnostic kit that is simpler and more sensitive than current diagnostic tools. They will also focus on finding a preventive vaccine.

Future promises

Scientists go out on a “limb”

As part of the Structural Biology Department since 2012, the new Molecular Mechanisms of Membrane Transport group led by Nicolas Reyes is investigating the transmission of nerve impulses in the brain and spinal cord. Their goal is to understand the molecular mechanisms controlling neurotransmitter transport across the cell membrane with a particular focus on the molecule glutamate. This fairly simple molecule, responsible for transmitting messages between neurons, can trigger a whole range of complex effects. Glutamate is the most common excitatory neurotransmitter found in vertebrates, but in high concentrations it can be toxic. In the event of a stroke, for example, large quantities of glutamate accumulate between neurons and cause nerve cells to die. Excess glutamate has also been observed in patients suffering from neurodegenerative diseases such as Parkinson’s or Alzheimer’s. Today, scientists are taking an original multidisciplinary approach to this research combining X-ray crystallography, calorimetry, fluorescence spectroscopy and electrophysiology. Nicolas Reyes’ team received a grant from the European Research Council (ERC) in 2012.

Getting on your nerves... in a “limb”

It begins with a group of cells, then progressively, if choreographed, the cells become an embryo, then a head forms, the beginnings of limbs, vertebrae and the spinal cord. Morphogenesis in higher vertebrates: this is what drives the scientists working under Jérôme Gros in the Imaging and Regulation of Morphogenesis in Higher Vertebrates group. “The goal is to decode the general concepts of embryogenesis using limb formation as a model. If we can understand how they are formed normally, we will be able to understand how malformations occur as well.” As part of the Developmental and Stem Cell Biology Department, his team is focusing on limb bud formation in chicken and quail embryos. Scientists want to understand how embryonic structures develop on the cellular level as well as the dynamics of embryo formation. They have therefore adopted an integrative approach that brings together classical embryology, molecular genetics, cellular biology, microscopy and biophysics. Cells are marked with fluorescence and then tracked within the embryo using a high-powered microscope. Embryonic development is recorded for periods ranging from two to forty-eight hours. This allows scientists to analyze intercellular coordination and synchronization as the limb buds and lengths to form three skeletal sections: the arm, the forearm and the most complex section, the hand.
To meet the many challenges faced along the way, the CIB works to address the informatics needs of Institut Pasteur scientists in an era where hardware and software have become an integral part of the research world.

What does the center aim to do?

The CIB was created following the realization that informatics plays a key role in the research world. As you might imagine, our greatest challenge is to better analyze scientific data. We need to read the latest publications or send research teams so that the informatics infrastructure can better accompany them in their research.

How did this happen?

In 2005-2006 the arrival of new, high-throughput sequencing technologies signaled the beginning of a technological gap. The generation of such huge volumes of data was nothing like what we were used to working with and the evolution of computer technology couldn't keep up with the advances in scientific technology. Today, computing power doubles every 18 months whereas the power of sequencing equipment doubles every five.

What kind of solutions can you offer?

Our job is to provide Institut Pasteur scientists with the informatics capabilities they need on a daily basis. On campus there are currently over 700 programs and databases that scientists can use to process and analyze their scientific data. In addition, portals to Institut Pasteur bioinformatics systems, optimally sized networks for routing information and a computing infrastructure that can better analyze scientific data. Our goal is to meet the expectations of the scientists at the Institut Pasteur to efficiently accompany them in their research.

What comes next?

We expect to offer highly efficient storage systems, optimally sized networks for routing information and a computing infrastructure that can better analyze scientific data. Our campus location amid a hive of biologists makes an ideal base for our work. It is here that we work in close collaboration with the HR department. As you might imagine, our greatest challenge is sharing our knowledge with research teams so that the informatics resources that we have invested in can be used to their full extent.

How did you end up at the Institut Pasteur?

I was recruited by the French National Center for Scientific Research (CNRS) to work in one of the most highly regarded French laboratories for mass spectrometry in the world, and a few years after I started my own group which pioneered the use of high resolution mass spectrometry in biological studies. In 2003, the Institut Pasteur invited me to take over as head of a new team as part of the overall informatics platform.

What exactly does this entail?

The goal is to have engineers and researchers working together. Our campus location amid a hive of biologists makes an ideal base for our work. It is here that we work on innovative technological developments to provide new questions for the future.
Thanks to a visual programming feature, users can not only test but also interact with the application’s features.

Pasteur laboratories were the source of many notable scientific breakthroughs. With 10 different divisions including Immunology, genetics, neuroscience, epidemiology, virology... the list goes on! In 2012 Institut Pasteur laboratories were the source of many notable scientific breakthroughs. With 10 different divisions including Immunology, genetics, neuroscience, epidemiology, virology... the list goes on! In 2012 Institut Pasteur laboratories were the source of many notable scientific breakthroughs.

Icy: this is the name of an image analysis program developed by Jean-Christophe Olivo-Marin’s group. Icy is open source and free, and provides biologists with a collection of innovative tools that can be used to analyze images and generate scientific insights.

Icy is open source and free, and provides biologists with a collection of innovative tools that can be used to analyze images and generate scientific insights.

In order to defend an organism against microbes, white blood cells called CD4 T lymphocytes are needed. These cells recognize and destroy infected cells via a process known as apoptosis.

Icy is open source and free, and provides biologists with a collection of innovative tools that can be used to analyze images and generate scientific insights.

In order to spread, the rabies virus must interact with only a small proportion of infected cells. This “remote” action enables CD4 T lymphocytes to control an infection despite interacting with only a small proportion of infected cells.

A cell must undergo a series of steps, including the production of intermediate RNAs, in order to produce proteins from its DNA. These steps must be closely monitored as errors can result in severe consequences, such as tumor formation.

The bacterium Clostridium difficile, responsible for nosocomial diarrhea, produces two toxins necessary for its virulence. The team working under Bruno Gopy recently showed that, in order to secrete these toxins, the bacterium uses a unique mechanism, similar to the one used by bacteriophages. This discovery opens up new possibilities for the development of targeted therapies that induce bacterial secretion of virulence factors.
In 2012 the Institut Pasteur and Sanofi concluded a historic partnership with the creation of the Sanofi-Institut Pasteur Awards for Biomedical Research to support outstanding work achieved in medical research. Four internationally renowned scientists, selected by an emeritus jury, were awarded this honor as well as an overall cash prize of €480,000 in the fields of neglected tropical diseases, vaccine innovation, and drug resistance. Two young scientists, including Philippe Bousso, head of an Institut Pasteur research unit (Institut Pasteur-Inserm), were also honored for their outstanding research. With these awards the Institut Pasteur and Sanofi renewed their commitment to research, and more specifically to research focusing on diseases in impoverished countries and those on the rise internationally. 2013 will mark the second edition of these awards. For further information, visit www.sanofi-institutpasteur-awards.com.

For over a century, scientists at the Institut Pasteur have been turning out discoveries that have revolutionized the way we do medicine. True to their founder, these scientists continue to mark the pages of history. But where can Pasteur’s legacy truly be seen today? A documentary addressing this very question takes us into the heart of the Institut Pasteur.

November 13, 2012, on the eve of the inauguration of the François Jacob building, the France 5 TV channel presented Les Héritiers Pasteur (The Pasteur Heirs), a fifty-two minute documentary with exclusive interviews by Institut Pasteur scientists. What distinguishes an Institut Pasteur scientist? What remains of the “Pasteurian” spirit in today’s laboratories? In search of answers, the film’s creators interviewed renowned scientists such as Françoise Barré-Sinoussi, laureate of the 2008 Nobel Prize in Medicine for her discovery of the AIDS virus, as well as young scientists completing their studies at the institute. Have they remained true to their founder’s vision? While replies varied, the idea that excellence, patience and rigor are what lead to great scientific advances provided a common thread.

There are currently nearly 2,400 staff members representing over 60 different nationalities at the Institut Pasteur. These men and women work tirelessly to find new ways to fight against the diseases of our time: cancer, AIDS, meningitis, influenza viruses, diseases linked to aging, etc. In 1965 Charles de Gaulle joked that “the world is full of good (re)searchers, but what we really need are more finders”. At the Institut Pasteur scientists conduct research, teach and have even been awarded the Nobel Prize in Medicine. But beyond these achievements, the documentary focuses on the methods, the hopes and the doubts of these people who, because of their rigor, determination and imagination, continue to make advances in research. For Alice Dautry, President of the Institut Pasteur, “above all, a great scientist knows when to take a lucky chance. [...] In fact, many of the greatest discoveries were made by chance. And sometimes you need to go out on a limb. The point is that, at the end of the day, when different people exchange and discuss ideas to resolve a common problem, you would be amazed at how a new idea can spark to life.”

Honoring scientific excellence

SCIENCE KNOWS NO COUNTRY, VIRUSES HAVE NO BORDERS.

Mirdad Kazanj, Head of the Institut Pasteur in Bangui (Central African Republic).
Global health security

ALLIANCE WITH WHO

In September 2012, the Institut Pasteur and the World Health Organization (WHO) signed a cooperation agreement that aims to help countries better manage the risks of spread of epidemics. The program should enable countries to strengthen their capacity for surveillance, response, and detection under the International Health Regulations established by WHO. The agreement also provides for the development of training programs in laboratory technique and field epidemiology as well as monitoring and control of disease vectors and reservoirs for which technical expertise will be provided by the Institut Pasteur and the Institut Pasteur International Network.

SURVEILLANCE IN THE MEDITERRANEAN

Since 2006, the EpiSouth network has organized field epidemiology as well as monitoring and training programs in laboratory technique and in partnership with the Turkish Public Health Institutions set up and run a Mediterranean regional laboratory network, which to date comprises 24 members, to facilitate the detection of infectious health risks particularly West Nile Virus, dengue and also biosafety risks. In 2010, the Institut Pasteur joined this network to strengthen their capacity for surveillance, response, and detection under the International Health Regulations established by WHO. The agreement also provides for the development of training programs in laboratory technique and field epidemiology as well as monitoring and control of disease vectors and reservoirs for which technical expertise will be provided by the Institut Pasteur and the Institut Pasteur International Network.

Laos

A NEW INSTITUTE

The Institut Pasteur International Network’s 32nd institute, the Institut Pasteur in Laos, was inaugurated in January 2012 in Vientiane. Headed by Professor Paul Brey, this research center’s primary mission is to reduce the risks of pandemic outbreaks in Southeast Asia, a region that is particularly affected by diseases such as chikungunya, Japanese encephalitis, or even dengue and malaria. With 1,600m² of laboratory area and 60 staff members at its disposal, the new institute effectively increases the country’s research capacities as well as its autonomy in terms of diagnostics and prevention. In November 2012, the research center played host to the French President, François Hollande on his official visit to Laos.

Niger

PUTTING TRAINING FIRST

In 2012, the Centre for Medical and Health Research (CERMES) in Niamey inaugurated the new Pierre et Anne-Marie Moussa Training Center. A course dedicated to “health and environmental” issues was introduced. The Area foundation supported a new training program focused on the fight against malaria. Providing healthcare training for young people and professionals is a major step forward for Niger and other countries in that region as they work to improve healthcare and the response to the threat of epidemics.

Africa

MALARIAS: FIGHT ON ALL FRONTS

Since 2002, the Global Fund to Fight AIDS, Tuberculosis and Malaria has supported several programs in the worst affected countries. In 2012, several projects for malaria research submitted by the Institut Pasteur International Network were selected for funding by the “5th initiative”, a scheme based on an indirect contribution by the French government to the Global Fund set up by the French Minister of Foreign Affairs. As a result, the Institut Pasteur in Madagascar will be able to coordinate a vast multidisciplinary study in Africa in cooperation with the Pasteur Centre in Cameroon, CERMES in Niger and the Institut Pasteur in Côte d’Ivoire. Projects from CERMES (anti-malarial drug resistance in Africa), the Institut Pasteur in Madagascar and the Pasteur Centre in Cameroon (research on parasite reservoirs) were also selected.

French Guiana

DECLARING WAR AGAINST MALARIA

Encouraged by the decline in the country’s malaria cases over the past decade, French Guiana has launched a plan to eradicate the disease. Teams from the Institut Pasteur in French Guiana are heavily invested in parasitology (studying antimalarial drug resistance and the dynamics of parasite populations) and medical entomology (studying mosquito vectors and their resistance to insecticides). Their work involves both surveillance and research. In 2012, an agreement was signed between the Institut Pasteur and the French Army Health Service to launch a major research program focusing on the parasite Plasmodium vivax.
AG2R LA MONDIALE gets pedaling!

Behind the slogan Roulons solidaires (Riding in solidarity) is a larger fundraising operation thought up by AG2R LA MONDIALE, France’s leading social welfare company, for the 2012 Tour de France. Throughout the entire duration of the Tour, AG2R LA MONDIALE invited the general public to get pedaling on station-ary bikes that were set up along the route as well as in its offices in a dozen cities. For each kilometer biked, €1 was donated to the Institut Pasteur. Obviously, the goal was to bike as far as possible! The money raised will be used to support the Perception and Memory Unit led by Dr. Pierre-Marie Lledo which focuses its research on neurodegenerative diseases such as Alzheimer’s or Parkinson’s. As a pioneer in long-term care insurance, AG2R LA MONDIALE had the unique idea of using community and solidarity to combat diseases that lead to a loss of autonomy. This campaign resulted not only in a €20,000 donation to the Institut Pasteur but also brought added awareness to neurodegenerative diseases. Look out for more pedaling to come in the 2013 edition of the Tour de France!

Yvon Breton, Executive Vice-President for AG2R LA MONDIALE, Pierre-Marie Lledo, head of the Perception and Memory Unit, and Sylvain Coudon, Vice-President Communications and Fundraising for the Institut Pasteur.

Give’em all you got!

In 2012, boxing was the theme of the 6th edition of Pasteurdon, the Institut Pasteur’s annual charity appeal. With the help of Pasteurdon patron, actress Alexandra Lamy, and the generosity and support of the general public, fundraising for Institut Pasteur scientists was in full swing from the starting bell.

The 2012 Pasteurdon chose to “step into the ring” to knock diseases to the mat. Posters show a virus taking a punch and feature a hard hitting slogan, “Give’em all you got!” After the dedication and hard work of participants from October 12-14th, this sixth edition of the fundraising and public awareness event brought in €1.2 million in donations for the Institut Pasteur. This figure turns expenses such as a €40,000 fluorescence microscope or an autism patient’s €4,000 genome sequencing procedure into real possibilities. For the second year running, actress Alexandra Lamy was patron of the event. A perfect fit considering the high regard she has always shown for Louis Pasteur’s work. In addition, 13 digital TV stations and hosts joined up in a unique partnership to benefit Institut Pasteur research. A series of short programs focusing on seven research topics were shown featuring Lamy, Institut Pasteur scientists, journalists and TV hosts. One of the highlights of the 2012 Pasteurdon was the flash mob of Institut Pasteur staff including scientists dressed as boxers dancing to the Rocky theme music. The money raised directly benefits the Institut Pasteur research teams. The institute also received support from partner companies such as Danone, the Le Roches-Mousquetaires Foundation, Gaumont-Pathé cinema, and AIV About caring. Scientists are in the ring every day and need the public’s support more than ever to continue their research and K.O. disease once and for all!

A foundation that cares

A loyal Institut Pasteur partner, the La Roche-Les Mousquetaires Foundation has supported Professor Pascale Cossart and her team since 2008 in their research on listeriosis. Potentially fatal, this disease is caused by a bacterium that is widespread in nature and capable of contaminating a number of foods. In addition, the foundation is a major financial supporter of Pasteurdon, the annual charity appeal organized by the Institut Pasteur, and helps spread event awareness to its customers and the general public. Over the past several years the Mousquetaires Foundation has led a fundraising campaign in French stores Intermarché and Bricomarché that donates €1 from the sale of any co-branded product to Pasteurdon. The group also plays an important role in communicating information about Pasteurdon to the public via posters in its stores, messages aired on the radio station Fréquence Mousquetaires and a banner on the foundation’s website.

Le Roches-Mousquetaires Foundation

17

2012