Homepage   general_banner
imprimer
Print
     Toxins and Bacterial Pathogenesis - l’URA 2172 du CNRS


  Director : Michèle MOCK (mmock@pasteur.fr)


  abstract

 

The virulence mechanisms of B. anthracis, the aetiological agent of anthrax, an extracellular toxinogenic bacterium, are investigated. The structural organisation of the toxins and their role in pathogenesis , and the role of the spore and of the bacilli cell surface structures in the interaction of the pathogen with the host are analysed. An anthrax vaccine composed of protective antigen and inactivated spores has been devised for human use, and the relevant mechanisms of protective immunity are studied.



  report

cale

Spore surface

(Patricia Sylvestre - Evelyne Couture-Tosi - Michèle Mock)

The spore is both the form of persistance in the environment of B. anthracis and the infectant form starting the infection after germination in the host. The exosporium is the most external structure of the spore. Its role in the early interaction with the host and its contribution to immunoprotection are analysed. A glycoprotein termed BclA (for Bacillus collagen-like) has been shown to be the structural component of the filaments located at the surface of the exosporium. BclA contains a central region presenting similarity to mammalian collagen proteins. This collagen region (CLR) consists of GXX collagen-like triplets. The number of GXX repeats varies condiderably between strains and we have shown that this variation is responsible for the length variation of the filament nap covering the exosporium outer layer. The characterization of other exosporium components and proteins required for the localisation and glycosylation of BclA is currently investigated.

Toxins of Bacillus anthracis - Vaccinal strategies and therapeutics

(Pierre Goossens - Ian Glomski - Michèle Mock)

Bacillus anthracis secretes two toxins composed of three proteins: lethal toxin (PA + LF) and edema toxin (PA + EF). PA (protective antigen) is the common component able to bind and deliver EF (edema factor) and LF (lethal factor) into target eukaryotic cells. EF is a calmodulin-dependent adenylate cyclase and LF is a metalloprotease which acts specifically on the MAPKKinases family. The three dimensional structure of PA, EF and LF is known. The three proteins are organised in a functional domain type structure. Specific inhibitors of LF, and EF activities have been obtained, and their potential therapeutic interest against infection is tested in collaborative research projects.

Monoclonal antibodies against PA and LF, inhibiting PA binding to the receptor or inhibiting formation of PA/LF complex have been obtained. They neutralize lethal toxin action in vitro, and protect mice against experimental infection with the toxin producing Sterne strain.

A non-living anthrax vaccine composed of protective antigen and inactivated spores has been devised for human use. The mechanisms of protective immunity induced by this vaccinal composition are currently studied. A cutaneous model of infection has been developed in mice to characterize the infection locally, at the site of inoculation and to elucidate the mechanisms leading to the dissemination to draining lymph node and to invasion of the host. Comparison of these events between naive host and immunized host should highlight hypotheses on the mechanisms controlling infection. Additionnally, in collaboration with the CRSSA, infection models have been worked out to study the efficacy of the vaccine after aerosolized infection. This is part of projects devoted to bioterrorism counter measures.

Beside the analysis of the adaptative response to vaccination, the mechanisms of innate immunity which are possibly involved in the early control of germination and bacterial dissemination are investigated. We have shown in vitro that group IIA phospholipase A2, a component secreted by neutrophils and alveolar macrophages, is highly bactericidal against B. anthracis; its in vivo effect on the infection is now studied. We analyse the interactions in vitro and in vivo between the spores and the dendritic cells (joint project IP/CRSSA). The use of strains mutated in the virulence factors will help to characterise the relative contribution of each toxin on cytokine and chemokine secretion profile, and on the intracellular signalisation pathways.

Vegetative form surface

( Agnès Fouet - Evelyne Couture-Tosi)

The bacilli isolated from animals dying of anthrax are encapsulated. The capsule covers a structural array termed S-layer. Yet, capsule and S-layer can be independently synthesized. The capsule has an anti-phagocytic role. At least three proteins, which genes belong to an operon, are necessary for capsule synthesis. A fourth protein, also encoded by that operon, degrades the capsule excess. This protein also catalyzes the capsule covalent anchoring to the peptidoglycan.

Two abundant proteins can compose an S-layer. Only one of them constitutes the in vivo S-layer. A common regulator controls the synthesis of the toxin components, the S-layer components and the capsule biosynthetic proteins. The S-layer proteins have, in their N-terminal region, a domain that is sufficient for their anchoring to a modified peptidoglycan associated polysaccharide. This non-covalent anchoring mechanism is found in many bacterial species.

Another surface protein anchoring mechanism has been described in Gram+ pathogens. "Sortases" catalyze the covalent anchoring of proteins harboring an LPXTG motif. This mechanism exists in B. anthracis which possesses three sortases. Mutants of each of these enzymes have been constructed and their virulence is currently been tested.

Genomic and transcriptional analysis

(Maryse Moya-Nilges - Odile Mary-Possot - Agnès Fouet)

B. anthracis, B. cereus and B. thuringiensis belong to the B. cereus group. A thorough genetic analysis has shown that these three bacteria are in fact one species.The complete genome sequences of the Ames strain of B. anthracis and of several B. cereus strains are available. The use of recent bioinformatic tools allowed us to perform a genome annotation better adapted to a functional analysis. In addition, the transcriptional profiling should define genes which are specifically expressed during bacterial development in the host. Genes under the control of AtxA, a master regulator of toxin, capsule, and surface component suntheses, are analysed under various culture conditions. The study comprises the genes controlled by PagR, a pleiotropic regulator itself belonging to the AtxA regulon.

Phylogeny and ecology of B. anthracis

(Patricia Sylvestre - Michèle Mock)

Anthrax is a worldwide mammal zoonose that has considerably regressed in the occidental countries. Nevertheless, it still exists in France where it sporadically appears each year in various regions. Collaborative phylogenetic studies on a French B. anthracis strain collection, provided by AFSSA, has revealed that these strains belong to the two main groups (totalizing more than 80 genotypes) defined world-wide. Moreover, four genotypes are defined uniquely by French strains. The two genotypes GT79 et GT80 are the only members found in the sub-group B2 which is the most common in France, in the mountain regions, but is extremely rare elsewhere in the world. These observations suggest a potential role of environnemental factors on the selection of particular genotypes.

Moreover, the BclA exosporium glycoproteins of the B2 group strains are particularly interesting. In contrast to the other B. anthracis strains which give a BclA pattern with a single glycosylated band, the B2 sub-group strains give a multiple-glycosylated-band pattern.

Gene exchange experiments indicate that the presence of several glycosylated bands is dependent on the genetic background of these strains. This suggests that posttranslational modifications, probably implicated in BclA glycosylation, are responsible for the phenomenom. The characterization of potential functions implicated in these modifications is under investigation.

Keywords: Anthrax, surface, toxins, virulence, spores, vaccine



  web site

puce More informations on our web site


  publications

puce Publications 2004 of the unit on Pasteur's references database


  personnel

  Office staff Researchers Scientific trainees Other personnel
  FERRAND Mireille, IP (mmferran@pasteur.fr) FOUET Agnès, Research Director class II CNRS

GOOSSENS Pierre, Assistant Professor IP

MARY-POSSOT Odile, Assistant Professor IP

MOCK Michèle, Research Director class I CNRS, Associated Professor IP, Head of the Unit and the National Reference Center on Anthrax

CANDELA Thomas, PhD student

DAVISON Sophie, PhD student

DO PHAN Viet, Contracting researcher

GLOMSKI Ian, Postdoctoral researcher, fellowship from Pasteur Foundation

MOYA-NILGES Maryse, Contracting researcher

PIRIS GIMENEZ Alejandro, Veterinary, PhD student

RETUREAU Emilie, Advanced Master's Degree

CORRE Jean-Philippe, Technician IP

COUTURE-TOSI Evelyne, Engineer IP

HAUSTANT Georges, Technician IP

SYLVESTRE Patricia, Engineer IP, Co-Responsible for the Reference Center on Anthrax


Activity Reports 2004 - Institut Pasteur
filet

Page Top research Institut Pasteur homepage

If you have problems with this Web page, please write to rescom@pasteur.fr